FORMULARIO DE FISICA GENERAL

I. ENERGIA MECANICA (CINEMATICA DINAMICA ESTATICA)

DENSIDAD Y PESO **ESPECIFICOS**

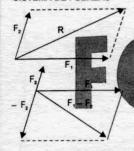
V= M

D= DENSIDAD M= MASA V= VOLUMEN

Peso específico=

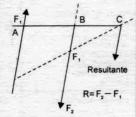
Peso Volúmen

 $Pe = \frac{P}{V}$


Fuerza: es toda causa que tiende a modificar el estado de reposo o movimiento de los cuerpos las fuerzas son magnitudes vectoriales.

Lev de Hooke

= a² a= alargamiento inicial = fe fuerza inicial


f₂ a²= alargamiento final f²= fuerza final

SISTEMA DE FUERZAS

FUERZAS PARALELAS

Momento de una fuerza

Momento = Fuerza X brazo de palanca Mo=fXd

Trabajo: es una transformación de energía que implica una fuerza.

Trabajo=fuerzaXdistancia recorrida T=fXd

Potencia: es el cociente entre el trabajo realizado y el tiempo empleado en realizarlo.

Potencia= trabajo

P= fd

t=trabaio

f=fuerza d=distancia

MAQUINAS SIMPLES

a) Palancas

Intermóvil (tijeras, pinzas) Interresistente (carretillas) Interpotente (brazo humano)

Ley de la palanca: Potencia por su brazo es igual a resistencia por su brazo


Fa=Rb

F= fuerza o potencia a= brazo de la potencia R= resistencia o carga b= brazo de la carga

b) Plano inclinado

fL=Ph f= Fuerza aplicada Longitud del plano inclinada

P= Peso del cuerpo h= altura del plano inclinado

X2m

prod de por la longitud del manubrio (r) es igual al producto de la resistencia por el radio del cilindro (r)

fR=Cr f= fuerza Cr R= radio mayor R C= carga o resistencia r= radio menor

Energía Potencial= peso X altura

Ep=PXH

Energía Cinética: Energía que posee un cuerpo en virtud de su moviemiento

Ec= 1/2 Mr² Ec= energía cinética M= Masa v= velocidad

Movieminto rectilineo uniforme

Velocidad= Dista

 $t = \frac{d}{v}$

Movimiento uniformemente acelerado

a) Sin velocidad inicial

b) Con velocidad inicial V= Vot +at d= Vo+ at²

Movimiento uniformemente retardado

a) sin velocidad inicial t=V 2d v= at d= at²

b) Con velocidad inicial

v= vt-at v= vt-

Caida libre de los cuerpos

 $v = gt h = \frac{1}{2}gt^2$

 $t=\sqrt{\frac{2h}{v}}$ $V=\sqrt{2gh}$

velocidad

gravedad tiempo

h= altura

Movimiento circular uniforme

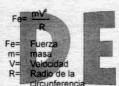
Velocidad tangencial

 $Vt = \frac{2 \pi rN}{}$

Vt= longitud en metros tiempo en seg.

velocidad tangencial vt= r= radio

número de vueltas t= tiempo


Velocidad angular

 $2\pi N$ + ángulo _radianes segundo seg

velocidad angular en Rad número de revoluciones tiempo m= N= t=

ocidad tangencial velocidad angular X radio

Fuerza centrifuga y centripeta

Aceleración centrípeta:

c) Lev de la acción t reacción

Aceleración de la gravedad

g= P Peso P=mg m g= 9.81 m/seg²

q= gravedad peso masa

Ley de la Gravitación

"Dos cuerpos cualesquiera se atraen con una fuerza directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de sus distancias"

d2

F= fuerza de atracción m m' masas de los cuerpos

k= constante gravitacional =6.67 X 10* dinas cm²

II HIDROSTATICA (MECANICA DE LOS LIQUIDOS)

Presión: Es la intensidad de la fuerza ejercida por cada unidad de superficie.

presión= fuerza superficie

F=PS

Presión hidrostática

Presión= Peso específico X altura P=PeXh

Fuerza sobre el fondo del recipiente

Fuerza=Peso específico X altura X superficie

F=PeXhXs

PRINCIPIO DE ARQUIMIDES

Todo cuerpo sumergido en un líquido experimenta un empuje o desalo

hX

f= fuerza

T=

Fluidos en movimiento

I= longitud

t= tiempo caudal v= velocidad c= VA.V V= volumen

Velocidad de salida:

2P v= 2 gh d

d= densidad del líquido velocidad de salida Presión manométrica

EGUACION GENERAL DEL ESTADO GASEOSO

del fluido

es de Gay-Lussac V $\frac{P_1}{P_2} = \frac{T_1}{T_2} = \frac{P}{T}$ ٧, T,

V, T, T Lev de Gav-Lussac:

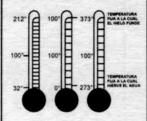
Si la presión se mantiene constante, el volúmen de un gas es directamente proporcional a la temperatura absoluta

UNIDADES DE PRESION

1 Atmósfea= 1013920 barias

1 Atmosfea= 1013.9 milibarias = 1.033Kg/cm²

La presión de 10,336 m³ de agua= La presión atmosférica

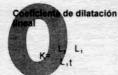

III ENERGIA CALORIFICA 1 Atmósfea= 1033 g/cm

Termología: Estudia los fenómenos físicos producidos por

Las formas de transmisión del calor son:

conducción convección

TERMOMETROS


Helación entre las escalas termométricas

$$^{\circ}C = \frac{5(^{\circ}F \quad 32)}{9}$$

°F=
$$\frac{9 \, ^{\circ}\text{C}}{5}$$
 + 32

Temperatura Kevin o Absoluta =Temperatura centigrada + 273

°K=°C+273

K= coeficiente de dilatación lineal

L = Longitud inicial L= Longitud final temperatura

Binomio de dilatación lineal

Cuando la temperatura es O°C L=L(1+Kt)

Cuando tenemos 2 temperaturas

L = L [1+Kt(t, t)]

Dilatación superficial:

S.= S.=(1 + Kt) S₂= dilatación superficial final temperatura

k= coeficiente de dilatación

Dilatación cúbica:

 $V_2 = V_1(1 + k t)$ V₂= Volumen final

V.= Volumen Inicial temperatura

> tripe CALORIMETRIA

coeficiente de dilatación

Calor Específico: Cantidad de calor aplicada a un gramo de sustancia para aumentar 1°C su temperatura El calor ganado o perdido por un cuerpo.

Siempre que no cambie de estado= Masa X calor específico X variación de temperatura

Q= CeXm (t₂-t₁) Q= Cantidad de calor Temperatura final

FORMULARIO DE FISICA GENERAL

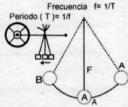
Ce= Calor Específico t1= Temperatura inicial

> Ce2= M1Ce1(T2-T1) M2(T2-T1)

CAMBIOS DE ESTADO FÍSICO

Velocidad de evaporación

V=C·S P-p


S= Superficie de liquido C= Circulación de Aire P-p= Diferencia de Presión H= Presión atmosférica existente

MOVIMIENTO VIBRATORIO Y ENERGÍA ACÚSTICA

Acústica: estudia la naturaleza. producción, propagación v propiedades de los sonidos.

MOVIMIENTO PENDULAR

Péndulo: es un objeto de peso mínimo mediante un hilo sostenido de un punto alrededor del cual oscila

Elementos del Movimiento Pendular

- Longitud del Péndulo
 Oscilación completa
- 3.- Semi oscilación

Movimiento ondulatorio

Longitud de onda: Distancia entre dos crestas consecutivas Amplitud de onda: Es el mayor valor de la eloneación

Leyes del Péndulo

- 1.- La ley del isocronismo (oscilaciones iguales)
- 2.- Ley de longitudes 3.- Ley referente a intensidad
- de la gravedad 4.- Ley de las masas

Fórmula del Tiempo de oscilación del Péndulo

= longitud de péndulo T= tiempo de oscilación

Fórmula de una oscilación

$$t=\pi\sqrt{\frac{L}{g}}$$

Movimiento ondulatorio:

Se relaciona con la producción y propagación de ondas en el agua, en una cuerda, etc. Ondas transversales (ondas luminosas, en el agua) Ondas Longitudinales (ondas de un resorte, el sonido en el aire).

Velocidad de propagación en el movimiento ondulatorio:

$$L = \frac{V}{f}$$
 $V = Lf$

L = Longitud de onda Velocidad del sonido o de ondas

frecuencia

El Sonido y su causa

Se origina de los cuerpos só lidos, líquidos, o gases animados de un movimiento vibratorio, que va del cuerpo de vibración a la fuente sonora El sonido no se transmite en el vacio

Velocidad del sonido:

En el aire 340 m/s En el agua 1435 m/s en los sólidos 5000 m/s

Cualidades del sonido:

Intensidad, timbre y tono.

Termodinámica:

Trabajo realizado por un gas:

T= PXv

P= presión

v= variación del volumen

 $P = \frac{\omega}{t} t = \text{unidad de tiempo}$ t = trabajo efectuado

Rendimiento de una máquina

Energia utilizada X 100 Rn= Energia recibida

EQUIVALENTE MECANICO DEL CALOR

$$J = \frac{T}{C}$$

cantidad de calor cantidad de trabajo

FOTOLOGÍA:

Flujo luminoso

0 = energía luminosa tiempo

Ley de la iluminación o Ley fundamental de Foto-

"La iluminación es directamente proporcional a la intensidad del foco e inversa-mente proporcional al cuadra do de la distancia del foco de la superficie

$$A = \frac{1}{d^2}$$

Iluminación =

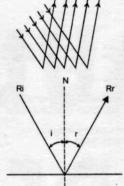
1 lux= 1 bujia 1 m²

$$d=\sqrt{\frac{1}{A}}$$

Fotometros: Aparatos destinados a medir la intensidad luminosa

Formula de los fotómetros:

$$\frac{1'}{d^2} = \frac{1'}{d^2}$$


I = iluminación

d2 = distancia del 1er. Foco d2 = distancia del 2do. Foco

l' = iluminación

Reflexión de la Luz

Es la desviación que experimentan los rayos al incidir sobre una superficie bien pulimentada o espejo

Reflexión X

R= ángulo de reflexión i= ángulo de incidencia Rr= rayo reflejado

ELECTROSTATICA LEY DE COULOMB:

 Dos cuerpos electrizados se atraen o se repelen con una fuerza cuya intensidad es directamente proporcional al producto de sus cargas eléctricas e inversamente proporcional al cuadro de la distancia que los separa

F= Fuerza de atracción o repulsión

c= carga eléctrica

c1= la otra carga eléctrica d= Distancia de separación

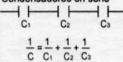
DIFERENCIA DE POTENCIAL

T= Trabajo en joules V= Diferencia de potencial Q= Cantidad de electricidad

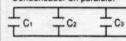
en couloms

1 Joule 1 Volt.= 1 Coulomb Capacidad eléctrica

$$C = \frac{Q}{V}$$


Capacidad= Carga Potencia

Farad = Coulomb Volt


CONDENSADORES:

Tienen la propiedad de almacenar grandes cantidades de electricidad.

Condensadores en serie

Condensador en paralelo:

C= C1 + C2 +C3

Sentido de la corriente eléctrica:

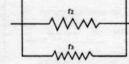
1. La Electrónica o Física. La corriente de electrones tienen sentido de negativo (-) a positivo (+)

2. Convencional o Técnica. La corriente eléctrica tiene sentido de positivo a negativo.

Intensidad eléctrica=

I= Intensidad en Ampere Q= Cantidad de eléctricidad en coulomb t= Tiempo Ampere= Coulomb Segundo

RESISTENCIA EL ECTRICA


Es la oposición que presenta un conductor al paso de la corriente.

Ohm= Volt Ampere

Resistencia en serie=

R= r1+ r2 + r3

Resistencia en Paralelo:

Lev de OHM:

" La intensidad de una corriente es directamente proporcional a la diferencia del potencial entre sus extremos, e inversamente proporcional a la resis-tencia eléctrica del conductor "

MAGNETISMO

Propiedad de algunas sustancias de atraer especialmente algunos minerales como hierro, cobalto y niquel.

F= X' X" pd²

x'x" = Intensidad de polos p= Permeabilidad Magnética d= Distancia entre polos

Intensidad de campo magnético:

F= Fuerza

m= Unidad colocada en el campo

Permeabilidad magnética:

P mag=
$$\frac{df}{x}$$

df= Densidad de flujo de la sustancia

x= Densidad de flujo del

Leyes de kirchof:

1a. Ley 12+13= IT

Intensidades que entran = intensidades que salen

1a. ΣI =0

2da. Ley Σir = Σe

Suma de fe= suma de productos

Lev de Joule:

Q= 0.24 cal x RI²t

Q= calor suspendido en

calorías R= resistencia de OHMS

= intensidad en amperes t = tiempo

Aplicaciones del efecto de

Joule a) Pérdida de energía en los conductrores
b) calefacción eléctrica

alumbrado eléctrico por incandecencia

termostatos, calentadores, termos, arco voltáico

FLECTROLISIS

Leyes de Faraday:

1a. Ley
$$\frac{m_1}{m_2} = \frac{Q_1}{Q_2}$$

mi= masa en q. m₂= masa en g. Q3= cantidad de electricidad Q2= cantidad de electricidad

2a. Ley M=Elt

M= masa del metal depositada E= equivalente electoquímico |= intensidad de la corriente t= tiempo que dura