MRU:

$$v = \frac{d}{t}$$

MRUA:

$$d = v_o \cdot t + \frac{at^2}{2}$$
; $a = \frac{v_f - v_o}{t}$; $a = \frac{v_f^2 - v_o^2}{2d}$; $d = \left(\frac{v_f + v_o}{2}\right) \cdot t$

Caída Libre:

$$y = \frac{gt^2}{2}$$
; $v_y = g.t$; $h = \sqrt{2gh}$; $g = 9.8 \text{ m/s}^2$

Lanzamiento vertical hacia abajo:

$$h = v_o t + \frac{gt^2}{2}$$
; $v_f = v_o + g.t$; $v_f^2 = v_o^2 + 2.g.h$

Lanzamiento hacia arriba:

$$h = v_0 t + \frac{gt^2}{2}$$
; $v_f = v_0 + g.t$; $v_f^2 = v_0^2 + 2.g.h$; $h_{max} = \frac{-v_0^2}{2.g}$

Lanzamiento de proyectiles:

Lanzamiento horizontal

$$y = \frac{gt^2}{2};$$
 $x = v_x t;$ $v_x = v_o;$ $v_y = g.t$

Tiro parabólico

$$y = v_0 t + \frac{gt^2}{2}; \quad x = \frac{2v_x v_y}{g}; \quad x = \frac{-v_0^2.Sen\ 2\theta}{g}; \quad \emptyset = \frac{1}{2}.sen^{-1}\ \frac{x.g}{-v_0^2}$$

Dinámica:

Gravitación Universal:

$$F = G.\frac{m_1.m_2}{d^2}$$
; 1 kp= 9.8 Newton; $G = 6.67 \times 10^{-11} \text{ N.m}^2/\text{ Kg}^2$

Ley de Newton:

$$F_N = m. a$$
 F = fuerza resultante

$$P = m.g$$
 $P = Peso$

$$F$$
- F_r = m.a F_r = fuerza de rozamiento

$$F_r = \mu$$
. N $\mu = coeficiente de rozamiento$

$$N = fuerza normal$$

$$T = F .d$$
 $T = Trabajo Mecánico$

$$E_p = m.g.h \hspace{1.5cm} E_p = Energ\'{i}a \hspace{0.1cm} Potencial$$

$$E_{\rm c} = \frac{m.v^2}{2}$$
 $E_{\rm c} = {\rm Energía~Cin\acute{e}tica}$

$$E_m = E_c + E_p \hspace{1cm} E_m = Energía \hspace{0.2cm} Mecánica \hspace{1cm}$$

$$P = \frac{T}{t}$$
 P = Potencia mecánica

$$P = F.V$$
 V= Velocidad

Ley de la conservación de la cantidad de movimiento

Momento lineal:

$$q = m.(v_f - v_o)$$
;

$$q = m.v$$
;

$$I = F. t$$

$$q=m.(\ v_f$$
 - v_o); $q=m.v$; $I=F.\ t;$ $F=\frac{m.v}{t}$; $I=Impulso$

$$q = I$$

q= Cantidad de movimiento

 $q_1 + q_2$ antes del choque = $q_1 + q_2$ despues del choque $m_1. u_1 + m_2. u_2 = m_1. v_1 + m_2. v_2$

$$e = \frac{v_2 - v_1}{u_1 - u_2}$$

 $e = \frac{v_2 - v_1}{u_1 - u_2}$ e= coeficiente de restitución; v_1 y v_2 = velocidades después del choque

 u_1 y u_2 = velocidades antes del choque

Estática: Momento de una fuerza:

$$M = F.d$$

M = Momento de torsión o giro

F= Fuerza perpendicular al brazo de palanca

d= Brazo de palanca

Sentido horario (-), sentido antihorario (+)

Condiciones de equilibrio:

$$\Sigma Fx = 0$$
; $\Sigma Fy = 0$; $\Sigma Fz = 0$

Movimiento Circular:

$$\theta = \frac{l}{r}$$

$$d = \theta.r$$
; $v = \omega.r$; $a = \alpha.r$

$$f = \frac{1}{T}$$

$$f = \frac{1}{T} \qquad \qquad T = \frac{1}{f} \quad ;$$

$$a_c = \frac{v^2}{r}$$

$$a_{c} = \frac{v^{2}}{r} \qquad \qquad f_{c} = \frac{m \cdot v^{2}}{r}$$

$$a_c = \omega^2 . r$$

$$a_c = \omega^2 . r$$
 $fc = m. \omega^2 . r$

r = radio

l =longitud del arco

f = frecuencia

T = periodo

d= desplazamiento lineal

 θ = desplazamiento angular

v= velocidad lineal

 ω = velocidad angular

a = aceleración lineal o tangencial

 α = aceleración angular

a_c = aceleración centrípeta

fc = fuerza centrípeta